1

Derivatives of Inverse Trig Functions

-We've learned before that we can find the inverse of a graph by reflecting the graph across the line y=x

-If we have a differentiable function with a tangent at the point $\left(a,f\left(a\right)\right)$, then the reflection will produce a tangent at the point $\left(f\left(a\right),a\right)$.

-This means the slope of the tangent on f will be a reciprocal f^{-1} .

Theorem

-If f is differentiable at every point on the interval I and $\frac{df}{dx}$ is never zero on I, then f has an inverse and f^{-1} is differentiable at every point on the interval $f\left(I\right)$

Derivative of Arcsine

-We know $x=\sin y$ is differentiable on the open interval $-\frac{\pi}{2} < y < \frac{\pi}{2}$ and the derivative cosine is positive there.

-Our Theorem assures that the inverse function $y = \sin^{-1}(x)$ is differentiable through the interval -1 < x < 1.

-It can't be differentiated at -1 or 1 because it would be a vertical tangent.

-We find $y = \sin^{-1}(x)$ as follows:

$$y = \sin^{-1}(x)$$

$$sin y = x$$

$$\frac{d}{dx}\sin y = \frac{d}{dx}x$$

$$\cos y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

- -This is safe because $\cos y \neq 0$ for $-\frac{\pi}{2} < y < \frac{\pi}{2}$.
- -We can replace $\cos y$ with $\sqrt{1-\left(\sin y\right)^2}$ which is $\sqrt{1-x^2}$

Thus,

$$\frac{d}{dx}\left(\sin^{-1}\left(x\right)\right) = \frac{1}{\sqrt{1-x^2}}$$

-If u is a differentiable function of x with $\left|u\right|<1$

$$\frac{d}{dx}\left(\sin^{-1}\left(u\right)\right) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$$

Example

Find
$$\frac{d}{dx} \left(\sin^{-1} \left(x^2 \right) \right)$$

$$= \frac{1}{\sqrt{1-\left(x^2\right)^2}} \bullet \frac{d}{dx} \left(x^2\right)$$

$$=\frac{2x}{\sqrt{1-x^4}}$$

Derivative of Arctangent

-Although the function $y = \sin^{-1}(x)$ has a rather narrow domain of $\begin{bmatrix} -1,1 \end{bmatrix}$, the function $y = \tan^{-1}(x)$ is defined for all real numbers.

$$\frac{d}{dx} \tan^{-1} \left(u \right) = \frac{1}{1 + u^2} \frac{du}{dx}$$

Example-Moving Particle

-A particle move along the x-axis so that its position at any time $t \ge 0$ is $x(t) = \tan^{-1}(\sqrt{t})$. What is the velocity when t = 16?

$$v(t) = \frac{d}{dt} tan^{-1} \sqrt{t} = \frac{1}{1 + \left(\sqrt{t}\right)^2} \cdot \frac{d}{dt}(t)$$

$$v(t)\frac{1}{1+t} \bullet \frac{1}{2\sqrt{t}}$$

$$v(16) = \frac{1}{1+16} \bullet \frac{1}{2\sqrt{16}} = \frac{1}{136}$$

Derivative of Arcsecant

$$\frac{d}{dx}\sec^{-1}\left(u\right) = \frac{1}{\left|u\right|\sqrt{u^2 - 1}}\frac{du}{dx}$$

Example

Find
$$\frac{d}{dx} \sec^{-1}(5x^4)$$

$$= \frac{1}{|5x^4| \sqrt{(5x^4)^2 - 1}} \cdot \frac{d}{dx} (5x^4)$$

$$= \frac{1}{5x^4 \sqrt{25x^8 - 1}} \cdot 20x^3$$

$$= \frac{4}{5\sqrt{25x^8 - 1}}$$

Inverse Function-Inverse Cofunction Identities

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

$$\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$$

$$\csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x$$

Calculator Conversion Identities

$$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x} \right)$$

$$\csc^{-1} x = \sin^{-1} \left(\frac{1}{x} \right)$$