Derivatives of Inverse Trig Functions

-We've learned before that we can find the inverse of a graph by reflecting the graph across the line $y=x$
-If we have a differentiable function with a tangent at the point $(a, f(a))$, then the reflection will produce a tangent at the point $(f(a), a)$.
-This means the slope of the tangent on f will be a reciprocal f^{-1}.

Theorem

-If f is differentiable at every point on the interval I and $\frac{d f}{d x}$ is never zero on I, then f has an inverse and f^{-1} is differentiable at every point on the interval $f(I)$

Derivative of Arcsine

-We know $x=\sin y$ is differentiable on the open interval $-\frac{\pi}{2}<y<\frac{\pi}{2}$ and the derivative cosine is positive there.
-Our Theorem assures that the inverse function $y=\sin ^{-1}(x)$ is differentiable through the interval $-1<x<1$.
-It can't be differentiated at -1 or 1 because it would be a vertical tangent.
-We find $y=\sin ^{-1}(x)$ as follows:

$$
y=\sin ^{-1}(x)
$$

$$
\begin{aligned}
& \sin y=x \\
& \frac{d}{d x} \sin y=\frac{d}{d x} x \\
& \cos y \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{\cos y}
\end{aligned}
$$

-This is safe because $\cos y \neq 0$ for $-\frac{\pi}{2}<y<\frac{\pi}{2}$.
-We can replace cosy with $\sqrt{1-(\sin y)^{2}}$ which is $\sqrt{1-x^{2}}$

Thus,

$$
\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}
$$

-If u is a differentiable function of x with $|u|<1$

$$
\frac{d}{d x}\left(\sin ^{-1}(u)\right)=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

Example

Find $\frac{d}{d x}\left(\sin ^{-1}\left(x^{2}\right)\right)$

$$
\begin{aligned}
& =\frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\frac{2 x}{\sqrt{1-x^{4}}}
\end{aligned}
$$

Derivative of Arctangent

-Although the function $y=\sin ^{-1}(x)$ has a rather narrow domain of $[-1,1]$, the function $y=\tan ^{-1}(x)$ is defined for all real numbers.

$$
\frac{d}{d x} \tan ^{-1}(u)=\frac{1}{1+u^{2}} \frac{d u}{d x}
$$

Example-Moving Particle

-A particle move along the x-axis so that its position at any time $t \geq 0$ is $x(t)=\tan ^{-1}(\sqrt{t})$. What is the velocity when $t=16$?

$$
\begin{aligned}
& v(t)=\frac{d}{d t} \tan ^{-1} \sqrt{t}=\frac{1}{1+(\sqrt{t})^{2}} \cdot \frac{d}{d t}(t) \\
& v(t) \frac{1}{1+t} \bullet \frac{1}{2 \sqrt{t}} \\
& v(16)=\frac{1}{1+16} \cdot \frac{1}{2 \sqrt{16}}=\frac{1}{136}
\end{aligned}
$$

Derivative of Arcsecant

$$
\frac{d}{d x} \sec ^{-1}(u)=\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x}
$$

Example

Find $\frac{d}{d x} \sec ^{-1}\left(5 x^{4}\right)$

$$
\begin{aligned}
& =\frac{1}{\left|5 x^{4}\right| \sqrt{\left(5 x^{4}\right)^{2}-1}} \cdot \frac{d}{d x}\left(5 x^{4}\right) \\
& =\frac{1}{5 x^{4} \sqrt{25 x^{8}-1}} \cdot 20 x^{3} \\
& =\frac{4}{5 \sqrt{25 x^{8}-1}}
\end{aligned}
$$

Inverse Function-Inverse Cofunction Identities

$$
\begin{aligned}
& \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x \\
& \cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x \\
& \csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x
\end{aligned}
$$

Calculator Conversion Identities

$$
\begin{aligned}
& \sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right) \\
& \csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

